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1. MOLECULAR BIOLOGY AND DNA 
 

All organisms on Earth, except for viruses, consist of cells.  Yeast, 
for example, has one cell, while humans have trillions of cells. All 
cells have a nucleus, and inside nucleus there is DNA, which 
encodes the “program” for making future organisms. DNA has 
coding and non-coding segments, and coding segments, called 
“genes”, specify the structure of proteins, which are large 
molecules, like hemoglobin, that do the essential work in every 
organism. Practically all cells in the same organism have the same 
genes, but these genes can be expressed differently at different 
times and under different conditions. Genes make proteins in two 
steps. First, DNA is transcribed into messenger RNA or mRNA, 
which in turn is translated into proteins.  The different patterns of 
gene expression following carefully tuned biological programs, 
according to tissue type, developmental stage, environment and 
genetic background account for the huge variety of different cells 
states and types. Virtually all major differences in cell state or 
type are correlated with changes in the mRNA levels of many 
genes. 

2. MICROARRAYS: AN OVERVIEW 
 

In recent years there has been an explosion in the rate of 
acquisition of biomedical data. Advances in molecular genetics 
technologies, such as DNA microarrays [1-8] allow us for the first 
time to obtain a "global" view of the cell. For example, we can 
now routinely investigate the biological molecular state of a cell 
measuring the simultaneous expression of tens of thousands of 
genes using DNA microarrays.  

Different types of microarray use different technologies for 
measuring mRNA expression levels; detailed description of these 
technologies is beyond the scope of this paper. Here we will focus 
on the analysis of data from Affymetrix arrays, which are 
currently one of the most popular commercial arrays.  However, 
the methodology for analysis of data from other arrays would be 
similar, but would use different technology-specific data 
preparation and cleaning steps.  

 

Figure 1: Affymetrix GeneChip® (right), 
its grid (center) and a cell in a grid (left). 

This type of microarray is a silicon chip that can measure the 
expression levels of thousands of genes simultaneously.  This is 

done by hybridizing a complex mixture of mRNAs (derived from 
tissue or cells) to microarrays that display probes for different 
genes tiled in a grid-like fashion. Hybridization events are 
detected using a fluorescent dye and a scanner that can detect 
fluorescence intensities. The scanners and associated software 
perform various forms of image analysis to measure and report 
raw gene expression values. This allows for a quantitative readout 
of gene expression on a gene-by-gene basis. As of 2003, there are 
one-chip microarrays that measure expression of over 30,000 
genes, covering most of the human genome.  

 

Microarrays have opened the possibility of creating data sets of 
molecular information to represent many systems of biological or 
clinical interest. Gene expression profiles can be used as inputs to 
large-scale data analysis, for example, to serve as fingerprints to 
build more accurate molecular classification, to discover hidden 
taxonomies or to increase our understanding of normal and 
disease states.  

 

The first generation of microarray analysis methodologies 
developed over the last 5 years has demonstrated that expression 
data can be used in a variety of class discovery or class prediction 
biomedical problems including those relevant to tumor 
classification [10-14].  Machine learning and statistical techniques 
applied to gene expression data have been used to address the 
questions of distinguishing tumor morphology, predicting post-
treatment outcome, and finding molecular markers for disease.  
Today the microarray-based classification of different 
morphologies, lineages and cell histologies can be performed 
successfully in many instances. The performance in predicting 
treatment outcome or drug response has been more limited but 
some of the results are quite promising.  Most results of 
microarray analysis still require further experimental validation 
and follow up study. Many current efforts are being directed in 
this direction. In a few cases the results of microarray analysis 
have found their way into more serious consideration in clinical 

 

Figure 2: An example raw microarray image for a single 
sample (image courtesy of Affymetrix). The intensity of 
image on the left is translated by microarray software 
into numbers like the ones on the right. 
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use such as being part of clinical trials (e.g. the use of an 
outcome-specific, computationally selected gene marker such as 
PKC beta and associated inhibitor for Lymphoma treatment, [9]). 

3. CHALLENGES FOR MICROARRAY 
DATA MINING  
Analysis of microarrays presents a number of unique challenges 
for data mining. Typical data mining applications in domains like 
banking or web, have a large number of records (thousands and 
sometimes millions), while the number of fields is much smaller 
(at most several hundred).  In contrast, a typical microarray data 
analysis study may have only a small number of records (less than 
a hundred), while the number of fields, corresponding to the 
number of genes, is typically in thousands.  Given the difficulty of 
collecting microarray samples, the number of samples is likely to 
remain small in many interesting cases.  

However, having so many fields relative to so few samples, 
creates a high likelihood of finding “false positives” that are due 
to chance – both in finding differentially expressed genes, and in 
building predictive models. We need especially robust methods to 
validate the models and assess their likelihood. 

The main types of data analysis needed to for biomedical 
applications include: 

• Gene Selection – in data mining terms this is a process of 
attribute selection, which finds the genes most strongly 
related to a particular class (see for example [15-21]). 

• Classification – classifying diseases or predicting outcomes 
based on gene expression patterns, and perhaps even 
identifying the best treatment for given genetic signature (see 
for example [27-37]). 

• Clustering – finding new biological classes or refining 
existing ones (see for example [22-26]). 

Most papers in this special issue focus on these three topics, with 
some of the papers spanning several topics.  Two papers use a 
number of techniques for biological discovery, and one paper 
presents a survey of approaches for applying machine learning to 
low-level analysis of microarray data. 

3.1 Gene Selection  
 

Attempts to find invariant or differential molecular behavior 
relevant to a given biological problem are also limited by the fact 
that in many cases little is known about the normal biological 
variation expected in a given tissue or biological state. To 
complicate matters a biological state is often  defined only along 
very coarse-grained phenotypic lines. This issue of normal 
variation is directly addressed by V. Nadimpally and M. Zaki, 
where they analyze genes which show normal variance across 
genetically identical mice to characterize a set that could be used 
to identify false positives in differential gene expression studies, 
but also to provide insights into the processes underlying natural 
variation.  Their analysis applied to six mouse tissues resulted in 
several genes which showed significant biological variations even 
among identical mice and provides a valuable compendium of 
normal variation in gene expression for mouse models. 

Another approach to determining variability in small samples is 
taken by S. Mukherjee, P. Sykacek, S. Roberts, and S. Gurr, who 
propose a gene-ranking algorithm using bootstrapped P-values. 
This approach is especially beneficial for taking into account 
small-sample variability in observed values of the test statistic. 
They show that this method outperforms widely used two-sample 
T-test on artificial data and apply the method to two real datasets. 

Most of the current gene selection methods in use today evaluate 
each gene in isolation and ignore the gene to gene correlations. 
From a biological perspective, however, we know that groups of 
genes working together as pathway components and reflecting the 
states of the cell are the real atomic units, or features, by which we 
might be more likely to predict the character or type of a 
particular sample and its corresponding biological state. It is these 
patterns of coherent gene expression that must form the input data 
on which sophisticated computational methods should operate 
(see for example [38-45]). In this context B. Hanczar, M. 
Courtine, A. Bennis, C. Hennegar, K. Clément, and J. Zucker 
propose to increase the accuracy of microarray classification by 
selecting appropriate “prototype” genes that represent a group of 
genes that share a profile and better represent the phenotypic class 
of interest. They present interesting results of the advantages of 
using prototype-based feature selection to classify 
adenocarcinomas. 

3.2 Classification   
 

Because the microarray dataset has many more features than 
records, the common statistical and machine learning procedures 
such as global feature selection can lead to false discoveries due 
to random chance. R. Simon highlights some of the common 
errors in identifying informative features and developing accurate 
classifiers, and shows the correct approach. 

M. O’Connell presents a review of methods available in Insightful 
S+ArrayAnalyzer, which cover the full spectrum of microarray 
data analysis, including data preprocessing, experimental design, 
quality control, gene selection and differential expression 
analysis, classification, and clustering.  (Note: S+ArrayAnalyzer 
includes much of the Bioconductor functionality 
(www.bioconductor.org), in addition to methods developed at 
Insightful.) 

E. Bair and R. Tibshirani present a “nearest shrunken centroid” 
method that has been successfully used to detect clinically 
relevant differences in cancer patients.  This method has been 
shown to be effective in dealing with noise inherent in 
microarrays and is implemented in their PAM system, available 
for researchers.  

S. Dudoit, M. van der Laan, S. Keles, A. Molinaro, S. Sinisi, and 
S. Teng propose a unified loss-based methodology for estimator 
construction, selection, and performance assessment with cross-
validation.  They present new theoretical results that show that 
cross-validation selection can be used in intensive searches of 
large parameter spaces, even in finite sample situations. They also 
present a new D/S/A algorithm for classification, which makes 
Delete/Substitute/Add moves to find the best gene sets that 
minimize estimation error. 
Other challenges to the deployment of molecular classification 
models come from the significant technical challenge in dealing 
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with the variability due to the use of different technologies, 
platforms and heterogeneous sources of material. One would 
expect that different datasets representing the same biological 
system will display some amount of “invariant” biological 
characteristics independent of the idiosyncrasies or details of the 
sample sources, the preparation procedures and the technological 
platforms used to obtain the data. These invariant biological 
characteristics, when properly captured and exposed, can provide 
the basis to build more robust, general and accurate classification 
models. These models hopefully will be based more on 
reproducible biological behavior and less on biases, idiosyncrasies 
and technological details. The method of B. Y. M. Fung and V. T. 
Y. Ng to classify heterogeneous factors based on IFs (impact 
factors) addresses this problem. The IFs provide a way to measure 
the variations between individual classes in train and test samples 
and can be integrated into standard classifiers such as Weighted 
Voting or k-NN resulting in a significantly improvement in the 
accuracy for classifying heterogeneous samples.  

3.3 Clustering and Visualization 
 

One important clustering task is to identify groups of co-
expressed genes recognize coherent expression patterns. However, 
the interpretation of co-expressed genes and coherent patterns 
strongly depends on the domain knowledge, which makes it 
difficult to fully automate. D. Jiang, J. Pei, and A. Zhang present 
an approach to this problem, based on interactive exploration of 
gene expression patterns.  They develop a novel tool, called 
“coherent pattern index graph”, which gives users visual feedback 
of strength and existence of coherent patterns. 

Another aspect of clustering is finding gene networks and gene 
interactions. X. Wu, Y. Ye, and L. Zhang propose a graphical 
model based interaction analysis for this purpose. They apply 
graphical Gaussian model to discover pairwise gene interactions 
and use loglinear model to discover multi-gene interactions. 

Scientific results are generally improved if we can look at the 
same events from different perspectives. There are many sources 
of biological knowledge that could be integrated into analysis of 
gene expression. P. Glenisson and J. Mathys explore how to 
combine expression data and literature extracted information to 
reveal biologically meaningful clusters that are not found from 
microarray data alone. This is an example of integrative genomics 
[46-47]. 
 

3.4 Biological Discovery  
One of the main goals of microarray data analysis is discovery of 
biological knowledge, such as metabolic pathways. H. 
Mamitsuka, Y. Okuno, and A. Yamaguchi present an approach 
that builds a Markov model using the graph structure of a known 
pathway, and then estimates parameters using the microarray data. 
 

A different approach is taken by M. Curran, H. Liu, F. Long, and 
N. Ge, who study methods for  relating gene expression pattern to 
the pattern of transcription factor binding sites (TFBS). They use 
a linear model to fit the microarray data and identify potential up-
regulated genes based on a specific biological hypothesis. 
Potential TFBS are then retrieved for the identified positive genes 
and randomly selected controls. Then, after removing similar 

binding sites, logistic regression is used to choose the best model 
to predict gene type (positive, control) based on the TFBS 
predictors. 

3.5 Low-level analysis   
 

The improvement of many analytical solutions to molecular 
classification problems is also conditional to the development of 
better and more powerful data analysis techniques, not only in 
high-level, but also in low level analysis. In low level analysis the 
focus is in providing better readouts, i.e. biological parameter and 
molecular probe estimates that are more accurate and faithfully 
reflect the actual biological state under study. B. Rubinstein, J. 
McAuliffe, S. Cawley, M.  Palaniswami, K. Ramamohanarao, and 
T. Speed advocate the use of more sophisticated machine learning 
approaches particularly in low level analysis. An example of a low 
level analysis problem they addressed is the expression level 
summarization problem: given a probe set’s intensities, after 
background correction and normalization, estimate the amount of 
target transcript present in the biological sample. They pointed out 
the potential of semi-supervised, heterogeneous and incremental 
learning for common microarray analysis settings such as those 
with partially labeled datasets, data from disparate domains, and 
sequential datasets. They identify the applicability of these 
machine learning approaches in other more general problems such 
as mass spectrometry, and fluorescence activated cell sorting. 

4. Summary 
 
Microarrays are a revolutionary new technology with great 
potential to provide accurate medical diagnostics, help find the 
right treatment and cure for many diseases and provide a detailed 
genome-wide molecular portrait of cellular states. The papers 
included in this issue are a good sample of second generation 
methodologies and techniques that are being used or under 
development today. As it can be seen from the results they are 
very promising and extend the possibilities of applying 
computational analysis and data mining to aid research in biology 
and medicine. We would like to close this introduction with a 
brief discussion to emphasize the large potential payoff of these 
analytical efforts but also pointing out the huge challenges ahead. 
 
There is little doubt about the potential of computational and 
statistical analysis of molecular probes to improve the 
understanding of the cell and the possibilities of molecular 
medicine, Finding new insights into the molecular basis of 
biological processes and searching for new drugs and treatments 
is a problem of high complexity and where the techniques of 
molecular biology has been applied for many decades. The 
process is analogous to a large search of a few molecular entities, 
connections or relationships in a large sea of possibilities. One 
important goal of current and future computational analysis 
methods --short of reverse engineering the entire cell circuitry, 
which by the way it is still an intractable problem-- should be to 
reduce that search and help expose the most promising candidates 
(gene, proteins, drugs etc.) for further study. Current methods 
already succeed to some extent in exposing relationships and 
correlations and provide new hypothesis to be tested. Better 
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accuracy, more robust models and estimators are clearly 
welcomed but sooner of later the biological interpretation of the 
computational or statistical results, e.g. gene selection, clustering, 
prediction, has to be done.  For this reason one of the main 
challenges, besides finding relevant molecular features or building 
successful empirical models, is to reveal the biological 
mechanisms that are responsible for their success. Typically a 
computational researcher will apply his or her favorite algorithm 
to some microarray dataset and quickly obtain a voluminous set of 
results. These results are likely to be useful but only if they can be 
put in context and followed up with more detailed studies for 
example by a biologist or a clinical researcher. Often this follow 
up and interpretation is not done carefully enough because of the 
additional significant research involvement, the lack of domain 
expertise or proper collaborators, or due to the limitations of the 
computational analysis itself.  This last is an important point as 
many approaches, despite being successful, left open the question 

regarding what the significant features or patterns mean from a 
biological perspective. Extracting knowledge from discovered 
patterns is a serious scientific bottleneck and a desirable goal of 
the next generation of molecular pattern recognition and data 
mining methods should be to provide a more integrated (e.g. 
along the lines of integrative genomics) and unified framework 
that not only builds models but also aids in the interpretation and 
understanding of them. 
 
We hope that this special issue on Microarray Data Mining will 
make more researchers interested in the field and its challenges 
and will be a contribution towards realizing the potential of 
microarrays for biology and medicine. 
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